
Page 1 of 13

A Skills List for Developing Embedded Software
Dale Word

Dept. of Electrical and Computer Engineering
California State University, Chico

1. What’s Unique About Embedded Development
The very nature of embedded systems dictates that the development of software
for them is different than software for general purpose computers.

a. Background
The key factors that separate embedded computer systems from other type of
computer based systems are as follows:

� Dedicated Function – Embedded systems are designed to perform
one specific set of functions, typically as part of a larger device or
system. This is in contrast with a typical desktop system that is a
general purpose computing platform, designed to support a variety
of applications, each performing a different set of functions.

� Limited Resources – Due to the fact that embedded systems are

typically a component of a larger system, rather than a standalone
computing device, they commonly are designed with limited
computing resources. This can be the result a desire to reduce
production costs, or as a result of the operating environment of the
end system. These limitations include the lack of graphical user
interfaces, limited storage devices, limited processing power, etc.

� Hardware Interaction – In general purpose computing systems, the

details of the operating environment a typically abstracted by
different operating system layers, to enhance portability and
interoperability. The limited resources and specific nature of
embedded systems prevent the use of those same layers, requiring
the embedded software to interface to the operating environment
much more directly.

� Real-Time Processing – The high level of integration with additional

devices and equipment in embedded systems frequently dictate
that they perform their processing in a fixed time interval. The “real-
time” aspect of the application adds additional complexity to all
phases of the development process, from design to testing.

Defining the characteristics of embedded systems is very inexact,
because embedded systems vary widely in their configurations and
capabilities. There is a full spectrum of systems that are considered

Page 2 of 13

embedded systems, from the smallest 8 bit microcontroller system, to the
highest end, high performance multiprocessor based multitasking system.

b. Differentiating Factors – Development

The unique set of characteristics that define embedded systems result in
an equally unique set of development considerations.

i. Resource Limitations – Developing code in a resource limited
environment requires developers to consider not only the functional
aspects of their code, but also its resource usage. This includes
memory usage, processor loading, data representation, etc.

ii. Hardware Interaction – The low level, hardware intensive code that

is required in many embedded systems requires an intimate
knowledge of the hardware components being used, and the
techniques required to access them directly.

iii. Real-Time – The addition of temporal requirements to any set of

software can multiply the complexity of the implementation. The
need to consider execution time and behavior patterns significantly
changes every aspect of the implementation process.

iv. Development Cycle - In software development efforts for general

purpose computers, the target hardware platform is well-known,
fixed, and well defined. In embedded systems this is frequently not
the case. The target hardware can vary from a sophisticated, well
defined, off-the-shelf platform to a completely untested prototype
design. In the cases where hardware development is parallel to the
software development, the potential for hardware problems requires
that embedded developers consider a much more complex set of
possibilities when problem solving. If the software development
cycle precedes the hardware development, the software set may
need to be developed on a prototype platform, and ported to the
actual target when it becomes available.

2. Historical Perspective on Software Development

Software development, in years past, required many of the skills that
embedded development continues to require today. Historically, operating
systems and development environments were not sophisticated enough to
eliminate the need for the low level skills of an embedded developer. As the
technologies have improved, there has been a movement toward more and
more abstraction of the underlying hardware and operating system. This
increasing abstraction of the target hardware, combined with increasingly
sophisticated development tools, has given rise to a growing number of
software developers that do not possess the skills required by embedded
development. Graphically based, integrated development toolsets have only

Page 3 of 13

exacerbated the problem, allowing “point and click” development cycles, that
require little or no understanding of what is going on below the application
level. In fairness, it should be stated that this trend toward abstraction and
tool sophistication has yielded great gains in productivity for general software
development. Unfortunately, these gains have come at the cost of losing the
skill base that applies directly to embedded development.

3. Detailed Skills List

The development of embedded software applications requires a skill set that
focuses on these unique characteristics of embedded systems.

a. Architecture Concepts
One of the key areas of knowledge that is required for embedded
development is an understanding and awareness of the underlying
computer architecture of the target system.

i. Memory Map View
Embedded developers need to have a very “physical” view of their
applications. This includes an understanding of the overall memory
layout of the target system, and where each component of their
application resides in that memory. This view can be obtained by a
quick study of the memory map (generated during the link process).
It should include an understanding of where code and data
segments exist, where stack, heap and constant storage is
allocated. This “physical” view, like many of the other skills
described in this section, is more critical in systems that have
limited memory resources, and less critical in systems with more
memory and more sophisticated operating systems.

ii. Stack Operations
One of the best ways to gather information about the current state
of execution in a multitasking embedded system is to take a
snapshot of the stack, and use it to determine the sequence of calls
that have led to the current state. In order to do this, a developer
must have a good understanding of the way exception processing
and context switching affect the contents of the stack, and the
structure of the stack frames and context sets that are pushed onto
the stack.

iii. Instruction Set Architecture
An understanding of the target processor details is another
important part of an embedded developer’s skill set. This should
include things like: Register Sets, Processor Modes, Addressing
Modes, Processor Status Registers, etc. This set of skills may not
be required in most development cycles, but can be crucial in
resolving subtle problems during debugging, or when implementing

Page 4 of 13

advanced features that directly rely on some unique aspect of the
processor.

iv. Exception Handling
A basic understanding of exception and interrupt handling is
important in dealing with external events or data sources, and error
conditions that result in a processor exception. This level of
processing is typically handled for, and hidden from the developer
in more sophisticated operating system and toolset systems.

b. Programming Skills:

The range of programming skills and the different areas of focus can be
viewed as a spectrum, from the most abstract, high level programming
environments to the lowest level, most hardware specific environment.
While development for general purpose machines typically focuses on
more abstract, high level programming concepts, embedded developers
must also focus on low level, more hardware specific details. Figure 1
depicts this relationship graphically.

- Syntax, Language
Mechanisms

- Logical Structure

- Design Refinements

- Performance

- Machine Level Interaction

- Machine Specific
Optimizations

Increasing D
etail Level

Tr
ad

iti
on

al
 D

ev
el

op
m

en
t

E
m

be
dd

ed
 D

ev
el

op
m

en
t

Figure 1

i. Assembly Language Programming
Assembly language code historically has been an important part of
many embedded systems, providing better performance and a
smaller footprint for critical sections of code. With the advances in
processor speed and memory size relative to cost, this is becoming
less and less necessary. A basic knowledge of the assembly
language of your target processor is important, but more of a
background topic than a central development skill as it was in the
past.

Page 5 of 13

ii. Low Level C Programming
One of the key characteristics of embedded software is its low
level, direct interaction with hardware. To implement these
functions in C, there are a few specific aspects of the language that
need to be understood:

• Direct memory access using type casting of constant values
*(int *)0xFFF0000 = some_value;

 status = *(int *)0xFFF00000;
• Bit level operations, including masking and shifting

*(int *)UART_STAT_REG = uart_status & TX_EN_BIT &
RX_EN_BIT;

While these are not new concepts to experienced C programmers,
they are commonly misunderstood or overlooked by developers
coming from a higher level, more abstract programming
background.

c. Tools/Environment

The environment used to develop embedded software is sometimes the
thing that is most different from other types of software development.

i. Headless Targets
The very nature of an embedded device that doesn’t have any kind
of external display or interfaces can make getting debugging
information difficult. If you have sophisticated tools, this is usually
not a problem. For the rare case where you don’t have support form
tools, some cleverness and creativity may be required to gain
visibility into the embedded application. This may involve using
hardware that was not intended to communicate data to provide
rudimentary information access.

ii. Cross Development
One of the key aspects that helps define embedded development is
the pattern of cross development – creating code on a machine of
one type, to run on a machine of a different type. Once this
“foreign” executable has been created, it must be loaded onto the
target hardware. This involves several concepts that are important
for a developer to understand. First, a developer needs to
understand what the boot sequence of the target device really is.
Typically the device will boot to a monitor program in ROM, initialize
some communications interface, and then wait to receive an
executable code image from the development machine.
Understanding this sequence, and where each of these
components resides in the overall memory map is essential for a
developer to have a clear picture of the target board’s behavior.

Page 6 of 13

iii. Hardware Knowledge
The close interaction with hardware in embedded systems requires
that developers understand the characteristics and capabilities of
each external (to the CPU) hardware component being accessed.
This usually means studying databooks and reference manuals for
the specific chips involved, and developing an understanding of the
configuration and operation of each of them. This is an area in
which example code sets can be of great value in helping speed up
the learning process. Looking at an existing driver for the chip
you’re using can often yield great insights into its use.

d. Problem Solving

One of the things that separates embedded development most from
general purpose systems development is the unique set of problem
solving skills it requires.

i. Real-Time Debugging
The addition of real time constraints to an application not only
complicates the design and development process, but can make
the debugging process extremely complex. The key difference is
the need to maintain an intuitive model of the temporal aspects of
the application. This includes recognizing the different behaviors
that result from timing dependencies, resource conflicts, interrupt
processing, etc.

ii. Understand Your Toolset
Starting out with any new embedded development tool set can be a
trying process. Most modern tools sets provide a wealth of
information and features, but they require an investment of time to
learn the details of how to make use of these capabilities. The time
spent learning a toolset almost always pays off later in time saved
during debugging. Besides learning what a toolset CAN do, it is
also crucial to understand its limitations. Examples of this include
understanding the effects of remote debug tasks running on your
target systems, or pipeline behavior and its affect on emulator
performance.

iii. Holistic Problem Solving
The term holsitic is defined as “ views in which the individual
elements of a system are determined by their relations to all other
elements of that system”. A holistic approach to problem solving
involves looking at all the system components, and objectively
analyzing the data to determine the root causes of a problem. The
holistic nature of this approach means that the interactions of all
components (hardware, RTOS, application software, etc.) are
considered together to identify the causes of unwanted behaviors.

Page 7 of 13

iv. Vertical vs Horizontal Problem Space
When considering the components that make
up any computer system, one way to view the
overall picture is to look at it as a hierarchy,
layered from the most concrete (hardware) to
the most abstract (user interface). Given this
view as a backdrop, it is useful to look at the
number of layers that are incorporated into a
typical training or problem solving exercise.
 For most formal academic programs,
the focus is on doing very detailed work on one
or two layers, taking a “horizontal slice” of the
overall problem space. This approach, while
giving a great deal of exposure to one specific
layer of the problem space, fails to model the
way difficult problems are solved in real
commercial environments.

v. Given a difficult or subtle problem, it is often required to take a top
to bottom view of the problem, or a “vertical slice” of the problem
space. This ability to seek solutions across functional boundaries,
and “drill down” through the layers of a system is characteristic of
embedded systems development.

vi. Problem Solving Methodology

Arthur Clarke, the famous science fiction author and futurist, once
said: “Any sufficiently advanced technology is indistinguishable
from magic.” I would propose that there is an embedded corollary
that says: “advanced technology produces problems that ARE
indistinguishable from magic (at first)”. The following is a list of
problem solving steps:

1. Find Clues – Like NTSB sifting through the wreckage of a
plane crash – examine each small piece may have some
significance. Look at stack traces, buffer contents, etc.,
identifying anything that indicates unexpected behavior.

2. Gather as much information as possible – The solution often
lies not in some complex implementation detail, but rather in
taking a simple (and somehow different) view of what is
occurring.

3. Pursue Theories –Like walking a maze, pursue each path
until you’re sure it has been exhausted. When that path has
been exhausted, backtrack and start pursuing another one.

4. Find the answer – Don’t assume that making some fairly
arbitrary change that makes the problem go away is an

Page 8 of 13

adequate solution. Find the root cause, so you can be sure it
is completely eradicated from the system.

5. Logic is your main tool – No matter how much pressure
you’re under, hang on to a logical, methodical approach. Be
careful to distinguish between what you know (and have
proven), versus what you’re assuming.

4. Transitioning to Embedded Development

For any organization transitioning to embedded development for the first time,
the first, most critical resource is the development staff. Creating an embedded
development team means either hiring the necessary talent or providing specific
training for current developers who may lack the specific skills required for
embedded development.

a. Hiring - Degree programs
Obviously, if the situation permits, hiring experienced embedded
developers is preferable. While evaluating the industry experience of a
candidate and its applicability to any development effort is too specific to
discuss in general terms, the applicability of different engineering degree
types and their applicability to embedded development can be briefly
summarized.

i. Computer Science
In the past 20 years or so, the focus of Computer Science degree
programs has changed. In the early days of the computer industry,
Computer Science programs tended to teach the fundamental
concepts associated with software theory, development and design
– without addressing specific application areas as major topics. As
the industry and technologies have matured, these application
areas have become recognized sub-disciplines of Computer
Science. This has led to more concentration on these more abstract
areas of study, with a reduction in the amount of time spent
addressing low level, concrete details. For embedded development,
this means that some Computer Science graduates may lack
adequate exposure to things like assembly language programming,
interrupt and driver level code, etc. The positive aspect of this trend
toward abstraction is that many of these same graduates may be
more highly skilled in design approaches, leading to higher quality
code once they overcome any low level shortcomings they may
have.

ii. Electrical Engineering
On the opposite end of the spectrum is the hardware-focused
discipline of Electrical Engineering. Just as in Computer Science,
the evolution of the industry has led to more diversity and
specialization in this discipline also. This trend requires an

Page 9 of 13

increased focus on these Electrical Engineering specific topics, and
less on software related concepts. One development that may help
prepare Electrical Engineering students for a transition to more
software oriented tasks is the growth in the use of high level logic
design languages. Experience with these tools, even in the context
of circuit design, provides some fundamental knowledge that can
ease the transition into code development later.

iii. Computer Engineering

Given the constant growth in the amount of information that must
be included in Computer Science and Electrical Engineering
programs, it follows that these programs would need to spend more
time addressing those topics firmly within their disciplines, leaving
less time to address topics in the other discipline. As these
programs migrate toward their ends of the spectrum, the growing
void is filled by the somewhat younger discipline of Computer
Engineering. Focusing on both hardware and software concepts, it
clearly addresses the issues associated with embedded
development

iv. Finding the Right Fit

Figure 3 shows a graphical view of this degree program spectrum.

More Concrete More Abstract

Digital Circuit Design
- Logic Design

- Timing Analysis

High Level Software
- Java
- GUI

 - Web Services
-OO Concepts

Low Level Software
- Assembly Language
- Interrupt Handling
 - HW Interaction

Computer Engineering

Computer Science

Electrical Engineering

Figure 3

The key to finding the best candidates for a given organization is to
identify where in this spectrum of knowledge skills are needed, and
finding candidates whose backgrounds match up.

Page 10 of 13

b. Professional Training

For existing employees without a background in embedded
development, or for those needing a refresher course, some professional
training may be required.

i. Extension/Remote Classroom Programs

With the growth in remote classes being offered via the internet,
many options exist for acquiring embedded development education
in this manner. The following is a brief list of some of these
programs:

 Embedded development certificate programs:
 University of California, San Diego
 University of Colorado at Boulder
 University of Washington

 Embedded development courses offered:
 University of California, Berkeley
 University of California, Irvine
 Iowa State University

(See the references at the end of this document for web links to
each of these programs)

ii. Mentoring
A more informal means of providing training is to establish a
mentoring program, using more experienced developers to train
their less experienced peers. One way to accomplish this is to have
the trainee “shadow” the mentor through a full development cycle. If
there are no experienced mentors available in-house, it may be
beneficial to hire outside consultants to lead an early development
cycle, while acting as mentors to the permanent development staff.

iii. Self Teaching

A final option, if no other resources are available, is to explore self-
teaching exercises. The most common way to do this is with the aid
of a reference text. This text should address general embedded
development concepts, and provide a set of examples to work
through, on some form of target hardware. This kind of exercise
can provide a good initial hands-on learning experience. The
problems with this approach are 1) help can be difficult to get when
you get stuck, and 2) they’re usually based on fairly simplistic, low
cost target hardware, restricting the complexity of the exercises.
(See the book references at the end of this document for some title
suggestions)

Page 11 of 13

5. Tips/Hints
The following is a list of informal tips for getting started with, and getting through
your first embedded development effort:

a. Start with reliable target hardware – The last thing you need during your
first embedded project is to have more problems and variables introduced
by the hardware. If your final target is a custom board, start with a similar
evaluation board until you get past the early stages of the software
development process.

b. Do not overestimate the value of demo code – Getting someone else’s

code to run, no matter how great of a demo it is, is not the same as
generating your own working code from scratch. There may be several
issues to be resolved in the process of getting your code to actually run on
the board.

c. Start simple – Get it to do something simple first. Take small steps early,

to verify your basic assumptions, before you start adding complexity.

d. DO NOT expect vendors to design your product – Most vendors of
embedded development products provide great support, often with very
experienced embedded developers. Be careful not to ask them to design
your product for you, 1) it’s not their job – they support their product, not
everything that can be produced with it, and 2) you’ll probably get a design
that looks more like their latest application note, rather than a good
solution for your product.

e. DO expect vendors to solve their own problems – When you encounter

problems with a tool, and the answer is not obvious in the documentation,
use the vendor’s support services. You may be struggling with a problem
they’ve seen before. Be prepared to isolate the problem section of your
code by generating a “cut-down” version of the code – this will greatly
simplify the process of identifying the true cause of the problem.

f. Keep a test/development log – Embedded systems, particularly real-time

embedded systems, can exhibit complex and subtle behavior patterns.
Over the span of a lengthy development cycle, it is difficult to track the
cause-effect relationship between changes to the code and the resulting
effect on behavior. A simple way to maintain a persistent record of this is
to keep a log, with entries for every set of code changes, the date, and the
test results generated. This does not have to be anything rigid or formal,
but rather a set of notes, tailored to each developer’s personal style. Using
some form of version control software to manage the code base is also

Page 12 of 13

very helpful, yielding a precise record of every change to the software, in
chronological order.

g. No matter how mysterious a problem seems, be methodical – Resist the

temptation to make arbitrary changes to see if you can make an illusive
problem go away. This will probably just cover up a problem that will come
back to haunt you later. [Also: No matter how mysterious or bizarre the
problem seems, don’t start sacrificing chickens or making offerings to the
digital gods – it won’t help, and it looks vaguely unprofessional.]

6. Conclusion - Defining Your Needs

There is no single definition of the skill set required to begin embedded software
development. The answer varies with each different development configuration.
Factors like the complexity of the target system, the time and budget constraints
involved, and the background of the existing development staff all contribute to
the unique character of each development effort. The skills needed to develop
embedded code for a simple, 8-bit microcontroller based product are distinctly
different than those required for a high-end real-time system with multiple 32-bit
processors. The key is to identify what your specific needs are for your
development, and ensure that you satisfy those needs with the appropriate staff
and equipment.

7. References

a. Books
“Programming Embedded Systems in C and C++”, Michael Barr, O’Reilly

“Fundamentals of Embedded Software: Where C and Assembly Meet”,
Daniel Lewis, Prentice Hall

“MicroC/OS-II, the Real Time Kernel”, Jean Labrosse, CMP

b. Websites

Embedded development certificate programs:

University of California, San Diego

http://www.extension.ucsd.edu/Programs/certificate_directory_su00.html

University of Colorado at Boulder
http://ece-www.colorado.edu/embedded.html

University of Washington

http://www.outreach.washington.edu/extinfo/certprog/emb/emb_main.asp

Page 13 of 13

Embedded development courses:

University of California, Berkeley

http://www.unex.berkeley.edu/eng/#8

University of California, Irvine

http://www.unex.uci.edu/cgi-bin/order/scan/sf=catno/se=214

Iowa State University
http://www.lifelearner.iastate.edu/courses/disciplinesp03.htm

